Dorfleitner, G., Muck, F., & Scheckenbach, I. (2021). Blockchain applications for climate protection: A global empirical investigation. Renewable and Sustainable Energy Reviews, 149(June), 111378.

Howson, P. (2020). Building trust and equity in marine conservation and fisheries supply chain management with blockchain. Marine Policy, 115, 103873.

Howson, P. (2020). Climate Crises and Crypto-Colonialism: Conjuring Value on the Blockchain Frontiers of the Global South. Frontiers in Blockchain, 3(May).

Campbell-Verduyn, M. (2021). Conjuring a Cooler World? Blockchains, Imaginaries and the Legitimacy of Climate Governance. Global Cooperation Research Papers, 28.

Howson, P., Oakes, S., Baynham-Herd, Z., & Swords, J. (2019). Cryptocarbon: The promises and pitfalls of forest protection on a blockchain. Geoforum, 100(February 2019), 1–9.

Howson, P. (2021). Distributed degrowth technology: Challenges for blockchain beyond the green economy. Ecological Economics, 184(June 2020), 107020.

Hull, J., Gupta, A., & Kloppenburg, S. (2021). Interrogating the promises and perils of climate cryptogovernance: Blockchain discourses in international climate politics. Earth System Governance, 9, 100117.

Schulz, K., & Feist, M. (2020). Leveraging Blockchain Technology for Innovative Climate Finance under the Green Climate Fund. SSRN Electronic Journal, 7, 100084.

Howson, P., & de Vries, A. (2022). Preying on the poor? Opportunities and challenges for tackling the social and environmental threats of cryptocurrencies for vulnerable and low-income communities. Energy Research and Social Science, 84.

Greenberg, P., & Bugden, D. (2019). Energy consumption boomtowns in the United States: Community responses to a cryptocurrency boom. Energy Research and Social Science, 50(December 2018), 162–167.

Download as a .bib file


Okorie, D. I. (2021). A network analysis of electricity demand and the cryptocurrency markets. International Journal of Finance and Economics, 26(2), 3093–3108.

Vries, A. De. (2020). Bitcoin’s energy consumption is underestimated : A market dynamics approach. Energy Research & Social Science, 70(July), 101721.

Scharnowski, S., & Shi, Y. (2021). Bitcoin Blackout: Proof-of-Work and the Centralization of Mining. In SSRN Electronic Journal.

Li, J., Li, N., Peng, J., Cui, H., & Wu, Z. (2019). Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies. Energy, 168, 160–168.

Amenta, C., Riva Sanseverino, E., & Stagnaro, C. (2021). Regulating blockchain for sustainability? The critical relationship between digital innovation, regulation, and electricity governance. Energy Research & Social Science, 76, 102060.

Dindar, B., & Gül, Ö. (2021). The detection of illicit cryptocurrency mining farms with innovative approaches for the prevention of electricity theft. Energy & Environment, April, 0958305X211045066.

Benetton, M., Compiani, G., & Morse, A. (2021). When Cryptomining Comes to Town: High Electricity-Use Spillovers to the Local Economy. SSRN Electronic Journal.

Download as a .bib file


Teng, F., Zhang, Q., Wang, G., Liu, J., & Li, H. (2021). A comprehensive review of energy blockchain: Application scenarios and development trends. International Journal of Energy Research, 45(12), 17515–17531.

Yildizbasi, A. (2021). Blockchain and renewable energy: Integration challenges in circular economy era. Renewable Energy, 176, 183–197.

Brilliantova, V., & Thurner, T. W. (2019). Blockchain and the future of energy. Technology in Society, 57, 38–45.

Teufel, B., Sentic, A., & Barmet, M. (2019). Blockchain energy: Blockchain in future energy systems. Journal of Electronic Science and Technology, 17(4), 100011.

Petri, I., Barati, M., Rezgui, Y., & Rana, O. F. (2020). Blockchain for energy sharing and trading in distributed prosumer communities. Computers in Industry, 123, 103282.

Mollah, M. B., Zhao, J., Niyato, D., Lam, K. Y., Zhang, X., Ghias, A. M. Y. M., Koh, L. H., & Yang, L. (2021). Blockchain for Future Smart Grid: A Comprehensive Survey. IEEE Internet of Things Journal, 8(1), 18–43.

Miglani, A., Kumar, N., Chamola, V., & Zeadally, S. (2020). Blockchain for Internet of Energy management: Review, solutions, and challenges. Computer Communications, 151, 395–418.

Yapa, C., de Alwis, C., & Liyanage, M. (2021). Can Blockchain Strengthen the Energy Internet? Network, 1(2), 95–115.

Valdivia, A. D., & Balcell, M. P. (2022). Connecting the grids: A review of blockchain governance in distributed energy transitions. Energy Research and Social Science, 84, 102383.

Schneiders, A., & Shipworth, D. (2021). Community Energy Groups: Can They Shield Consumers from the Risks of Using Blockchain for Peer-to-Peer Energy Trading? Energies, 14(12).

Ahl, A., Yarime, M., Tanaka, K., & Sagawa, D. (2019). Review of blockchain-based distributed energy: Implications for institutional development. Renewable and Sustainable Energy Reviews, 107, 200–211.

Zhu, S., Song, M., Lim, M. K., Wang, J., & Zhao, J. (2020). The development of energy blockchain and its implications for China’s energy sector. Resources Policy, 66, 101595.

Buth, M. C. (Annemarie), Wieczorek, A. J. (Anna), & Verbong, G. P. J. (Geert). (2019). The promise of peer-to-peer trading? The potential impact of blockchain on the actor configuration in the Dutch electricity system. Energy Research & Social Science, 53, 194–205.

Ante, L. (2020). Smart Contracts on the Blockchain – A Bibliometric Analysis and Review. SSRN Electronic Journal, 10, 1–48.

Zannini, A. (2020). Blockchain technology as the digital enabler to scale up renewable energy communities and cooperatives in Spain [Master thesis].

Download as a .bib file


Gallersdörfer, U., Klaaßen, L., & Stoll, C. (2021). Accounting for carbon emissions caused by cryptocurrency and token systems.

Küfeoğlu, S., & Özkuran, M. (2019). Bitcoin mining: A global review of energy and power demand. Energy Research and Social Science, 58, 101273.

Qin, S., Klaaßen, L., Gallersdörfer, U., Stoll, C., & Zhang, D. (2020). Bitcoin’s future carbon footprint.

de Vries, A. (2018). Bitcoin’s Growing Energy Problem. Joule, 2(5), 801–805.

de Vries, A., & Stoll, C. (2021). Bitcoin’s growing e-waste problem. Resources, Conservation and Recycling, 175(September), 105901.

Náñez Alonso, S. L., Jorge‐vázquez, J., Echarte Fernández, M. Á., & Reier Forradellas, R. F. (2021). Cryptocurrency mining from an economic and environmental perspective. Analysis of the most and least sustainable countries. Energies, 14(14).

Goodkind, A. L., Jones, B. A., & Berrens, R. P. (2020). Cryptodamages: Monetary value estimates of the air pollution and human health impacts of cryptocurrency mining. Energy Research and Social Science, 59(March 2019), 101281.

Truby, J. (2018). Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain technologies and digital currencies. Energy Research and Social Science, 44(June), 399–410.

Koomey, J., & Masanet, E. (2021). Does not compute: Avoiding pitfalls assessing the Internet’s energy and carbon impacts. Joule, 5(7), 1625–1628.

Sedlmeir, J., Buhl, H. U., Fridgen, G., & Keller, R. (2020). Ein Blick auf aktuelle Entwicklungen bei Blockchains und deren Auswirkungen auf den Energieverbrauch. Informatik-Spektrum, 43(6), 391–404.

Gallersdörfer, U., Klaaßen, L., Stoll, C., Gallersdo, U., Klaaßen, L., Stoll, C., & Gallersdo, U. (2020). Energy Consumption of Cryptocurrencies Beyond Bitcoin. Joule, 4(2018), 2018–2021.

Li, J., Li, N., Peng, J., Cui, H., & Wu, Z. (2019). Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies. Energy, 168, 160–168.

Platt, M., Sedlmeir, J., Platt, D., Xu, J., Tasca, P., Vadgama, N., & Ibanez, J. I. (2021). Energy Footprint of Blockchain Consensus Mechanisms Beyond Proof-of-Work.

McDonald, K. (2021). Ethereum Emissions: A Bottom-up Estimate.

Howson, P. (2019). Tackling climate change with blockchain. Nature Climate Change, 9(9), 644–645.

Stoll, C., Klaaßen, L., & Gallersdörfer, U. (2019). The Carbon Footprint of Bitcoin. Joule, 3(7), 1647–1661.

Yan, L., Mirza, N., & Umar, M. (2021). The cryptocurrency uncertainties and investment transitions: Evidence from high and low carbon energy funds in China. Technological Forecasting and Social Change, 121326.

Zhu, S., Song, M., Lim, M. K., Wang, J., & Zhao, J. (2020). The development of energy blockchain and its implications for China’s energy sector. Resources Policy, 66, 101595.

Badea, L., & Mungiu-Pupazan, M. C. (2021). The Economic and Environmental Impact of Bitcoin. IEEE Access, 9, 48091–48104.

Huston, J. (2020). The Energy Consumption of Bitcoin Mining and Potential for Regulation. George Washington Journal of Energy and Environmental Law, 11(1), 32–41.

Sedlmeir, J., Ulrich, H., Gilbert, B., & Keller, R. (2020). The Energy Consumption of Blockchain Technology : Beyond Myth. Business & Information Systems Engineering, 62(6), 599–608.

Schinckus, C. (2020). The good, the bad and the ugly: An overview of the sustainability of blockchain technology. Energy Research and Social Science, 69(May), 101614.

Bogensperger, A., Zeiselmair, A., Hinterstocker, M., Dossow, P., Hilpert, J., Wimmer, M., von Gneisenau, C., Klausmann, N., Strüker, J., Urbach, N., Schellinger, B., Sedlmeir, J., & Völter, F. (2021). Welche Zukunft hat die Blockchain-Technologie in der Energiewirtschaft?

Download as a .bib file

Download all four sections as a .bib file